首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9277篇
  免费   863篇
  国内免费   219篇
电工技术   595篇
综合类   274篇
化学工业   1722篇
金属工艺   384篇
机械仪表   665篇
建筑科学   803篇
矿业工程   351篇
能源动力   300篇
轻工业   710篇
水利工程   135篇
石油天然气   529篇
武器工业   36篇
无线电   922篇
一般工业技术   1198篇
冶金工业   390篇
原子能技术   70篇
自动化技术   1275篇
  2024年   28篇
  2023年   198篇
  2022年   249篇
  2021年   466篇
  2020年   370篇
  2019年   358篇
  2018年   405篇
  2017年   427篇
  2016年   343篇
  2015年   453篇
  2014年   640篇
  2013年   753篇
  2012年   861篇
  2011年   865篇
  2010年   733篇
  2009年   612篇
  2008年   572篇
  2007年   496篇
  2006年   530篇
  2005年   392篇
  2004年   197篇
  2003年   144篇
  2002年   76篇
  2001年   39篇
  2000年   44篇
  1999年   34篇
  1998年   16篇
  1997年   16篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1981年   1篇
  1979年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
Thermally robust and highly efficient green-emitting luminescent ceramics are gradually attracting great attention as promising phosphors using in high-brightness laser phosphor display to reduce serious speckle noise as well as high cost. However, lumen density is still seriously restricting their potential applications especially under high-power density laser due to insufficient absorption of blue laser and significant thermal quenching. Here, we report an Al2O3-LuAG: Ce composite ceramic phosphor (CCP) for high-brightness laser phosphor display. Owing to good optical properties and high thermal conductivity of Al2O3, the Al2O3-LuAG: Ce CCP shows high photoluminescence quantum yield (79.6%), low thermal quenching (only 3.2% loss in luminescence at 200°C), and high thermal conductivity (18.9 W·m−1·K−1). Moreover, the Al2O3, as scattering centers, enhances the Rayleigh–Mie scattering of the blue laser, and hence the absorption of the Al2O3-LuAG: Ce CCP exhibits a remarkable improvement (~2.3 times) at 450 nm. Finally, with optimized thickness (0.3 mm) of Al2O3-LuAG: Ce CCP, an excellent luminous efficiency (216 lm·W−1) and outstanding lumen density (6129 lm·mm−2) of the green-emitting light source was obtained by driving under a high-power density (28.33 W·mm−2) blue laser. All of those validate the suitability of the Al2O3-LuAG: Ce CCP for high-brightness display.  相似文献   
52.
Li4Ti5O12 (LTO) attracts great interest due to the “zero strain” during cycles but the poor electronic and ionic conductivity critically impede the practical application. Herein, we report a synergy strategy of tuning localized electrons to shift Fermi level and band gap by Mg/Zr co-doping and oxygen vacancy incorporation, which significantly improves Li+ and electronic transport. More importantly, the intrinsic synergistic mechanism has been revealed by neutron diffraction, X-ray absorption spectra, and first-principles calculations. The “elastic effect” of lattice induced by Mg/Zr co-doping allows LTO to accommodate more oxygen vacancies to a certain degree without a severe lattice distortion, which largely improves the electronic conductivity. Mg/Zr co-doping and oxygen vacancy incorporation effectively enhanced the dynamic characteristics of LTO electrode, achieving the excellent rate performance (90 mAh/g at 20C) and cycle stability (96.9% after 500 cycles at 10C). First-principles calculations confirm Fermi level shifts to the conduction band, and the band gap becomes narrowed due to the synergistic modulation, and the intrinsic mechanism of the enhanced electronic and Li-ion conductivity is clarified. This study offers some insights into achieving the fast Li+ insertion/extraction by tuning the crystal and electronic structure with lattice doping and oxygen vacancy engineering.  相似文献   
53.
Bioglass (BG) possesses excellent bioactivity and has been widely used in the manufacture of biomaterials. In this study, a composite with different surface bioactivity was fabricated via in situ melting polymerization by incorporating BG and poly(amino acid) (PAA) at a suitable ratio. The structure of the composite was characterized by Fourier transform infrared spectroscopy and XRD. The compressive strength of the BG/PAA composites was 139 MPa (BG:PAA = 30:70). The BG/PAA composites were degradable, and higher BG in composite showed higher weight loss after 4 weeks of incubation in simulated body fluid. In addition, the BG/PAA composite maintained adequate residual compressive strength during the degradation period. The SEM results showed the differences in surface bioactivities of the composites directly, and 30BG/PAA composite showed thicker apatite layer and higher Ca/p than 15BG/PAA. in vitro MG-63 cell culture experiments showed that the composite was noncytotoxic and thus allows cells to adhere, proliferate, and differentiate. This indicates that the composite has good biocompatibility. The implantations in the bone defects of rabbits for 4 and 12 weeks were studied. The composites had good biocompatibility and were capable of guiding new bone formation without causing any inflammation. The composite may be successfully used in the development of bone implants.  相似文献   
54.
In this work, carboxymethyl cellulose (CMC) with low substitution degree, followed by different posttreatments, was applied to prepare treelike CMC nanofibrils (CMCNFs) and rodlike CMC nanocrystals (CMCNCs), and their performance in CMC composite film was evaluated simultaneously. From transmission electron microscopy results, it was found that the treelike CMCNCFs exhibited a lager aspect ratio compared to the rodlike CMCNCs. As for reinforcing CMC film, 4 wt% was the best adding amount, at this time, the tensile strength of CMC/CMCNFs and CMC/CMCNCs composite films was increased by 72.1% and 47.3%, respectively. Moreover, adding these nanofillers to CMC also could enhance the thermal stability of composite films slightly, while the transmittance of composite films was reduced at the same time. In addition, CMC/CMCNFs film was designed as a packaging box to determine its performance. Therefore, this study could reveal the differences of properties for composites with different types of nanocellulose and provide a foundation for further application of nanocellulose.  相似文献   
55.
Hydrophobic association (HA) hydrogels with outstanding mechanical, rheological and recovery properties were successfully synthesized by micellar copolymerization of acrylamide with lauryl methacrylate. The synthesis occurred at room temperature and the synthesis condition was moderate by using the redox initiator system of Ammonium persulfate - sodium bisulfite as initiators. Cationic surfactant (dodecyl trimethyl ammonium bromide) was utilized to form micelles with hydrophobe, served as physical cross-linking points in the 3D networks of hydrogels. The HA hydrogels showed a high tensile strength of 181 kPa, superior stretchability of 2300% and excellent toughness of 2.16 MJ m−3. Moreover, they owned extraordinary self-recovery under different conditions. It is hopeful that the hydrogels with superior mechanical strength and self-healing properties would be applied to the fields of biomedicine and engineering. Meanwhile, based on above materials, HA hydrogels could also be synthesized with the combination of hydrophobic association and other synergistic effects, such as latex particles, electrostatic effect and nanoparticles.  相似文献   
56.
Due to the low concentration of silver in water, most of the cellulose adsorbents exhibited low removal efficiency, which greatly limited their practical applications. Herein, a cellulose aerogel modified by thiosemicarbamide (CAT) was fabricated for reducing and adsorbing silver ions from low concentration wastewater. The characterization results concluded that CAT owned a three-dimensional spongy structure with many circular microspheres and a better specific surface area (19.37 m2 g−1), as well as the functional groups of ─C═N+─H and ─(C═S)─N. The static batch adsorption experiments demonstrated that CAT could reached the maximum removal percentage of 94.94% and adsorption capacity of 42.12 mg g−1 under the initial concentration of Ag(I) was 15 mg L−1 and the pH value was 7. Meanwhile, the adsorption of Ag(I) on CAT was second-order reaction, and the Langmuir model could better fit the adsorption process. In addition, CAT exhibited wide pH values (1–9) adaptability and excellent adsorption performance for silver through electrostatic interaction, chelation, and reduction. This study probably provides a new method as well as important experimental data and theoretical reference for the removal of silver ions and other metals.  相似文献   
57.
Being a new kind of nanomaterials, aromatic polyamide nanofibers (ANF) have been much highlighted in recent studies. We here demonstrate an isopropyl alcohol (IPA) accelerated chemical cleavage on poly (p-phenylene terephthalamide) chopped fibers, which provides an efficient preparation method of ANF. The comprehensive study on the processes accelerated by different alcohols revealed that the preparation time of ANF in the mixed medium of dimethyl sulfoxide (DMSO)-alcohol (20:1 in volume) was shorten to 45 min and 75 min for methanol (ethanol) and isopropanol, respectively. However, the nanofibers prepared in DMSO-IPA exhibited the minimum in axial and radial dimensions, providing the finest and most uniform diameter of 16 nm. The corresponding ANF films through vacuum assisted filtration also showed the highest tensile strength of 150 MPa, in comparison with those of the ANF films prepared using other alcohols, which were about 110 MPa. Furthermore, ANF/silicon hybrid films were prepared by the ionic ring-opening reaction followed by the alkoxysilane condensation and nanoparticle fabrication. By changing the organo functional groups in the alkoxysilane, the surface of the films were adjustable in a wide contact angle range from 56° (hydrophilic) to 150° (superhydrophobic), suggesting the amendable interfacial properties potential applicable to composite fabrication with most of the resin matrix.  相似文献   
58.
Highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) stabilized by vitamin E (VE) is widely applied in artificial joints as the bearings. Despite the approval, there is a discord that VE lowers the crosslinking efficiency, limiting its use at high concentration. In this work, we aim to obtain highly crosslinked and oxidation resistant UHMWPE through the conjunction of tea polyphenol and chemical crosslinking. We hypothesized that highly incorporated tea polyphenol with multiple reactive sites can ameliorate crosslinking efficiency of chemical crosslinked UHMWPE in comparison to VE. Epigallocatechin gallate (EGCG) as representative tea polyphenol was incorporated into UHMWPE at high concentration (2–8 wt%), followed by chemical crosslinking with 2 wt% organic peroxide. Unlike VE/UHMWPE blends as the control, chemical crosslinking achieved an increasing trend in crosslink density of EGCG/UHMWPE blends with increasing antioxidant concentration. High concentration of EGCG also enhanced the oxidation stability of UHMWPE. Intriguingly, EGCG endowed UHMWPE with an excellent antimicrobial property, which was inefficient in VE/UHMWPE. Cell viability was hardly affected by the high loaded antioxidant and peroxide. The chemically crosslinked UHMWPE blended with EGCG is proved to be a reasonable, cost effective and realistic alternative for use in artificial joints.  相似文献   
59.
基于 YOLOv5 算法的交通标志识别技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种改进YOLOv5算法的交通标志识别方法.首先改进YOLOv5算法的损失函数,使用EIOU损失函数代替YOLOv5算法所使用的GIOU损失函数来优化训练模型,提高算法的精度,实现对目标更快速的识别;然后使用加权Cluster非极大值抑制(NMS)改进YOLOv5本身所使用的加权NMS算法,提高生成检测框的准确率.实验结果表明,改进后的YOLOv5算法在由长沙理工大学制作的CCTSDB交通标志数据集上训练的模型的mAP值达到了84.35%,比原始的YOLOv5算法提高了6.23%.所以改进YOLOv5算法在交通标志识别中有更高的精度,能够更好的应用到实践当中.  相似文献   
60.
针对传统平移扫描检测系统的缺陷,提出了一种基于旋转扫描线结构光的三维检测与重构系统及对应的系统参数标定方法,建立了点云数据获取模型。被测物体通过旋转实现与线结构光间的相对运动,得到被测物体的外表面二维图像。系统标定获得图像坐标与世界坐标间的转换关系,得到被测物体的三维坐标信息及数字模型。由实验可知,相机的标定精度为0.2 mm,原理样机进行物体测量的精度为0.1 mm。实验证明该系统检测精度高,具有可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号